Conversational AI: Differentiating between relationship and function. 

Conversational AI is growing in popularity for customers and businesses, and its capabilities have developed significantly since the technology first emerged. But as it grows, striking the right balance of its purposes is becoming more and more essential. So, what’s the difference between chatbots and regular bots? And what makes function-based resolutions and relationship value-add opportunities different?

THE DIFFERENCE BETWEEN “BOT” VS “CHAT” 

Chatbots and bots are the product of combining natural language processing (NLP) with traditional software. While both can help customers through typed and spoken interfaces, they aren’t entirely the same. 

SO, WHAT’S THE KEY DISTINCTION BETWEEN A BOT AND A CHATBOT? 

The terms themselves give it away. The major difference is that a bot is an automated tool designed to complete a specific task, while a chatbot does the same thing, only with a focus on the conversation. 

While bots have mastered automated tasks, chat doesn’t necessarily have a set functional component. Think of it this way: robots in a factory don’t look like humanoids out of science fiction and instead serve as functional equipment. Meanwhile, setting the world to rights with your friends doesn’t necessarily achieve anything beyond human interaction. Therefore, the thing that sets apart bots and chatbots is that they have different outcomes. One facilitates relationships, while the other resolves issues with functionality. 

FUNCTIONAL RESOLUTIONS VS RELATIONSHIP VALUE-ADD OPPORTUNITY 

Function-based resolutions are likely to have one single input for a single output. They’re basically a one-in-one-out system. A relationship value-add opportunity does exactly what it says – it adds value in many ways, with multiple outputs for one single input. 

HOW DOES THIS WORK IN PRACTICE? 

Automation allows companies to create bots capable of answering simple queries and concerns like, “what is my estimated delivery date window?” or “where is my parcel in the delivery journey?”. When a company offers products and services, giving customers an easy option to find out quick information can be essential, and keeps you ahead of the competition that might have slower customer service processes. 

Functional resolutions streamline services, give quick and easy access to information, and show that your brand can be trusted. 

Meanwhile, relationship value-added opportunities can arise from conversational AI that allows a company to get to know its customers better. Whether this means providing a personal shopper experience or simply using technology capable of personalising customer experiences – customers place value on the relationship a company forges with them. 

Building meaningful consumer-company relationships improves loyalty and retention, shows attention to detail, and provides exciting and unique customer experiences. 

HOW CAN BOTH WORK IN A CUSTOMER MIX, AND AT WHAT STAGES? 

There’s space for function and relationship in the customer mix, but often at different stages. 

For example, in fashion retail, an AI program for online shopping that delivers a personal shopper-style experience – wherein the technology learns a person’s style, general fit, and what they want to project through clothing – is worth the machine learning investment because you’re looking to build a relationship. 

Using the same example, when a customer wants to know where their order is in the delivery journey, this is a functional post-sale query – of which an automated bot would be better to use. Although queries can arise at any stage, they’re most important right before a purchase and afterwards. At these stages, customers want a quick, no-fuss response and usually aren’t thinking about the relationship with the company. Meanwhile, customers might think more about the relationship before they even find your company and during the buying process. As more and more customers switch to buying products and services online, competing for attention will require personalisation. 

UNDERSTANDING WHERE TO SPLIT INVESTMENT 

Splitting investment requires a deeper understanding of what’s right for your business and customers. After all, functionality and relationship-building tools are needed throughout various stages – hence the need to find the right balance. 

Say a fashion retailer is missing an automated bot that can resolve post-sale queries, for example. Customers would then need to find another way to get a response to their questions or concerns. As a result, the customer might feel that the company hasn’t invested enough in this area of the customer journey. 

Similarly with a fashion retailer not offering an AI program allowing customers to get a personal shopper-style experience; the customer might feel that the business hasn’t invested enough into creating consumer-business relationships. Striking the perfect balance between the two will depend on what your customers expect from you, and the type of results you want to see from the investment. A decent chunk of investment should be poured into the relationship-building side if boosting customer loyalty and retention is the goal. If you know your customers care less about the relationship and more about getting answers, then the investment should flow into automation facilitating functionality. 

THE FUTURE OF CONVERSATIONAL AI 

In my view, companies differentiating between relationship value-add opportunities and functional resolution, while also pouring in appropriate amounts of AI and automation investment, will likely become market leaders soon. 

Just look at the current market leaders and how they’re using AI and automation. Most – if not all – will be using the appropriate amount for their customers and are continuing to invest back into the right places. They’re leading the way by embracing AI and machine learning technology.

Rob Mead

Head of Strategic Marketing at Gnatta.

How smart labels are transforming supply chains

Sharath Muddaiah • 27th January 2025

As e-commerce continues to rise globally, the impact of just-in-time manufacturing and rising consumer expectations mean the need for real-time visibility has never been greater. Smart labels directly address this demand, offering solutions to long-standing challenges like shipment delays, theft, and the lack of traceability. With the smart label market projected to grow from $14.1...

The rise of loyalty apps

Sue Azari • 17th January 2025

Increased choice and a consumer more price sensitive than ever before, has made customers far more likely to shop around for the best deals. Price is now the number one factor in brand consideration. In an effort to bag a bargain, loyalty programs have become increasingly popular with consumers, with nine out of ten in...

Rocket launch challenges Elon Musk’s space dominance

Professor Sultan Mahmud • 16th January 2025

Amazon founder Jeff Bezos’s space company has blasted its first rocket into orbit in a bid to challenge the dominance of Elon Musk’s SpaceX. The New Glenn rocket launched from Cape Canaveral Space Force Station in Florida at 02:02 local time (07:02 GMT). It firmly pits the world’s two richest men against each other in...

Giesecke+Devrient launches new Smart Label at CES 2025

Giesecke Devrient • 06th January 2025

G+D has today launched the G+D Smart Label, its innovative tracking solution that transforms any package into an IoT device. Ultra-thin and only slightly larger than a credit card, the new Smart Label proposition has been jointly developed by G+D in conjunction with its hardware partner, Sensos to enable cost-effective, accurate location tracking for a...

Choose an AI solution to transform beyond technology

Kit Cox • 09th December 2024

The first step is knowing exactly what your business wants to achieve with AI; think faster, smarter and more efficient. Once you know what you are working towards, you can start looking for a solution that can help you make it a reality. AI integration can feel like a daunting task at the beginning, so...

A Roadmap to Security and Privacy Compliance

John Lynch Director of Kiteworks • 04th December 2024

Only by understanding the current regulatory environment and implementing robust data protection measures, can organisations enhance their security posture, ensure compliance, and build resilience against the latest cyber threats. This article provides a comprehensive roadmap of how to do it.

Data-Sharing Done Right: Finding the Best Business Approach

Bart Koek • 20th November 2024

To ensure data is not only available, but also accessible to those that need it, businesses recognise that it is vital to focus on collecting, sorting and governing all the data in their organisation. But what happens when data also needs to be accessed and shared across the business? That is where organisations discover a...